2538 : '  C. L. BRUNDIN

magnetic drag forces on a spherical satellite in a rarefied partially
ionized atmosphere,” Rarefied Gas Dynamics, edited by J.
Laurmann (Academic Press Inc., New York, 1963), pp. 45-64; a
shortened version appears in NASA SP-25, pp. 33-41 (Decem-
ber 1962).

15 Hanson, W. B., “Upper atmosphere helium ions,” J. Geo-
phys. Res. 67, 183-188 (1962).

16 Mott-Smith, H. M. and Langmuir, 1., “The theory of col-
lectors in gaseous discharges,”” Phys. Rev. 28, 727-763 (1926).

17 Heatley, A. H., “Collector theory for ions with Maxwellian
and drift velocities,” Phys. Rev. 52, 235-238 (1937).

18 Weissler, G. L., ‘“Photo-ionization in gases and photoelectric
emission from solids,” Handbuch der Physik XXI (Springer-
Verlag, Berlin, 1956), pp. 304-382.

19 Kurt, P. G. and Moroz, V. 1., “The potential of a metal
sphere in interplanetary space,” Iskusstvennye Sputniki Zemli
7, 78-88 (1961); transl. in, Planet. Space Sci., 9, 259-268 (1962).

2 Davis, A. H. and Harris, 1., “Interaction of a charged satel-
lite with the ionosphere,” Rarefied Gas Dynamics, edited by L.
Talbot (Academic Press Inc., New York, 1961), pp. 691-699.

21 Gurevich, A. V., “Perturbations in the ionosphere caused by
a travelling body,” Iskusstvennye Sputniki Zemli 7, 101-124
(1961); transl. in, Planet. Space Sci. 9, 321344 (1962).

22 Dolph, C. L. and Weil, H., “On the change in radar cross-
gection of a spherical satellife caused by a plasma sheath,”
Planet. Space Sci. 6, 123-132 (1960).

28 Chopra, K. P., “Review of electromagnetic effects on space
vehicles,” J. Astronaut. Sci. IX, 10-17 (1962).

" 2% Bird, G. A., “The flow about a moving body in the upper
ionosphere,”’ J. Aerospace Sci. 29, 808-814 (1960).

% Bordeau, R. E., Donley, J. L., Serbu, G. P., and Whipple,
E. C., Jr., “Measurement of sheath currents and equilibrium
potential on the Explorer VIII satellite,” J. Astronaut. Sci. 8,
65-73 (1961).

% Whipple, E. C., Jr., “The ion-trap results in ‘Exploration of
the upper atmosphere with the help of the third Soviet Sputnik,””’
Proc. Inst. Radio Engrs. 47, 2023-2024 (1959).

% Gringauz, K. 1., Bezrukikh, V. V., and Ozerov, V. D., “Re-
sults of measurements of the concentration of positive ions in the
atmosphere, using ion traps mounted on the third Soviet earth

NOVEMBER 1963

AIAA JOURNAL

ATAA JOURNAL

satellite,” Artificial Earth Satellites, edited by L. V. Kurnosova
(Plenum Press, Inc., New York, 1961), Vol. 6, pp. 77-121.

% Krassovsky, V. 1., “Exploration of the upper atmosphere
with the help of the third Soviet Sputnik,”” Proc. Inst. Radio Engrs.
47, 289-296 (1959).

29 Epstein, P. 8., “On the resistance experienced by spheres
in their motion through gases,”” Phys. Rev. 23, 710-733 (1924).

% Chopra, K. P. and Singer, 8. F., “Drag of a sphere moving in
a conducting fluid in the presence of a magnetic field,”” Proc.
1958 Heat Transfer and Fluid Mechanics Institute (Stanford
University Press, Stanford, Calif., 1958), pp. 166~175.

_# Chandrasekhar, S., “Dynamical friction,” Astrophys. J.
907, 255-973 (1943).

2 Wyatt, P. J., “Induction drag on a large negatively charged
satellite moving in a magnetic field free ionosphere,”” J. Geophys.
Res. 65, 1673-1678 (1960).

33 Beard, D. B. and Johnson, F. 8., “Comment on Wyatt’s
analysis of charge drag,” J. Geophys. Res. 65, 3491-3492 (1960).

3 Licht, A. L., “The drag on a charged satellite,” J. Geophys.
Res. 65, 3493 (1960).

% Wyatt, P. J., “Author’s reply to the Beard-Johnson com-
ments,” J. Geophys. Res. 66, 1578-1579 (1961).

% Beard, D. B. and Johnson, F. 8., “Ionospheric limitations
on attainable satellite potential,” J. Geophys. Res. 66, 4113-
4122 (1961).

3 Rand, S., “Wake of a satellite traversing the ionosphere,”
Phys. Fluids 3, 265-273 (1960).

# Jefimenko, 0., “Effect of the earth’s magnetic field on the
motion of an artificial satellite,”” Am. J. Phys. 27, 344-348
(1959).

3 Lighthill, M. J., “Note on waves through gases at pressures
small compared with the magnetic pressure, with applications
to upper atmosphere aerodynamics,” J. Fluid Mech. 9, 465-472
(1960).

“ Kraus, L. and Watson, K. M., “Plasma motions induced by
satellites in the ionosphere,” Phys. Fluids 1, 480-488 (1958).

41 Greifinger, P. 8., “Induced oscillations in a rarefied plasma
in a magnetic field,” Aerodynamics of the Upper Aimosphere,
edited by D. J. Masson (Rand Corp., 1959), pp. 19-1-19-32.

VOL. 1, NO. 11

Integral Approach to an Approximate Analysis of Thrust
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An approximate analysis of thrust vector control by secondary fluid injection is approached
through the application of the integral form of the conservation laws and the equation of state
for a mixture of gases. The thrust augmentation and the side force are expressed in terms of
the flow conditions at the exit section of the nozzle and the problem is thus reduced to that of
determining these conditions. In this sense the present approach is different from the usual
one where the pressure distribution over the nozzle surface is the object of the analysis. Con-

. sidering inert gases, the necessary equations are developed and the steps involved in obtain-
ing a solution are discussed. An approximate formula for the side forece, applicable under
certain conditions of operation, is obtained. Results given by the formula are compared and
found to be in agreement with appropriate experimental results.
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a constant

distance from injection port to nozzle exit along the nozzle
surface in the plane of injection

mass flow rate

outward normal to nozzle surface

pressure

radius; also gas constant

region of space enclosed by the throat and exit sections
and the nozzle surface between them

area of nozzle surface influenced by secondary injection

X component of exit velocity in the presence of injection

difference of u and U,

X component of exit velocity in the absence of injection

Y component of exit velocity

velocity .

ratio of specific heats

expansion ratio

distance along the nozzle surface in the plane of injection
from injection point

molecular weight

density

a dimensionless number
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Subscripts

nozzle exit

injectant

condition in the absence of injection

shock

primary flow condition at injection station in the absence
of injection
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Introduction

HE problem of thrust vector control by secondary fluid

injection is not readily amenable to theoretical analysis.
This situation arises mostly out of the inability to take ac-
count of some of the important details that concern the com-
plex interaction occurring between the secondary fluid and
the primary flow in the rocket nozzle. Attempts, however,
have been made at analyzing the problem on the basis of
some simple assumptions. A detailed review of these at-
tempts is given in Ref. 1. In most of these investigations
the following flow field is assumed. The secondary fluid is
assumed to form a body of some shape, and associated with
the body is a shock wave (strong or weak) in the primary
flow. A choice is then made whether to consider the inter-
action of the shock wave and the boundary layer along the
nozzle wall and the possible separation of the boundary
layer. Based on this choice, a disturbed region on the nozzle
wall is defined. If shock/boundary-layer interaction is not
considered, the disturbed wall region is simply that bounded
by the shock; but if the shock/boundary-layer interaction
is considered, the disturbed region is usually assumed to be
made up of the region in which separation occurs and the re-
gion immediately behind the shock, in which pressure in-
creases. Criteria have yet to be established to indicate
when to make one or the other choices for the disturbed
wall region.

Once the flow model has been decided, the analysis proceeds
to determine the disturbed region and the pressure distribution
over that region. Neither the body shape, nor the shock
shape, nor the separated region when existing are known a
priori. The analysis of the problem as posed is, therefore,
carried out in an approximate manner. Finally, the in-
duced force is derived from an integration of the excess (over
the original) pressure forces acting over the disturbed region.

It is apparent that, in such analysis, assumptions have to
be made with regard to important but meagerly understood
aspects of the flow field near the injection port, and the final
result hinges heavily on how closely the theoretically derived
disturbance region and the pressure distribution in this re-
gion approximate the actual situation. Without having more
information than is presently available with regard to the
actual flow field in the vicinity of injection port, one cannot
expect that these approximate determinations of the dis-
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turbed region and the pressure field over it are sufficiently
accurate. The theoretical pressure distribution over the
nozzle wall, particularly in the vicinity of the injection port,
is sensitive to the assumed flow model. Therefore, to obtain
the induced force by integration of the theoretically derived
pressure forces on the nozzle wall would appear unsatisfactory.

In the light of the preceding observations, it is fruitful to
approach the problem in a manner that does not require a
knowledge of many important details of the flow structure
and does not involve the integration of pressures over the
nozzle wall and yet is sufficiently sound. Such an approach
is given in this paper. The basic idea of the approach is to
reduce the calculation of the induced force to that of the flow
conditions at the exit section of the nozzle. The purpose of
this paper is to formulate the problem according to this ap-
proach and to discuss the features involved in obtaining a
solution.

Equations

Consider the case of injection through a single port (Fig. 1).
The difference between the force F on the rocket in the pres-
ence of secondary fluid injection and the force Fy on the
rocket in the absence of injection is given by

F—Fo=ff (p — pon dS +
S
[f ¥V + @ ~ pmis @
Az

where n, as shown in Fig. 1, is the outward normal to the
surface of the rocket nozzle; A; is the surface area of the
injection hole; and S is the disturbed area of the nozzle
surface, 1.e., the extent of this surface affected by the proc-
esses resulting from the secondary injection. In Eq. (1)
the flow quantities with the subscript O refer to conditions
in the absence of injection, and quantities without a subscript
refer to conditions in the presence of injection. (This scheme
will be adopted generally in the rest of the paper.) The
integral over the surface S is the induced force, and the
integral over the area A; is the reaction force. Introduce
a Cartesian coordinate system X, ¥, Z, such that the X axis
is disposed of, as shown in Fig. 1, along the axis of the nozzle,
and the X-Y plane contains the center of the injection hole.
Then, the thrust augmentation 6F, and the side force F, on the
rocket are given by

F, = —i-(F — Fy)
F, —j-(F — Fy)

As a first step in the approach suggested in this paper,
the force components 6F, and F, are expressed in terms of the
flow conditions at the exit section of the nozzle. To do this,
mark out a region of space ®, enclosed by a fixed surface
formed by the throat and exit planes (normal to X axis) of
the nozzle and the surface of the nozzle wall between those
planes (see Fig. 1). Considering steady flow an equation for
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the conservation of momentum of the fluid enclosed in the
region & when no secondary injection is present is obtained.
Similarly, another equation for the conservation of momen-
tum of the fluid enclosed in the region ® when secondary
injection is present is obtained. Subtracting one from the
other of the equations obtained, it is found that

o 4

0F, = [! pdS — p.As + [Sf (oV-D)V-i dS — myU, A_,S
@)
F, = [! §-V(eV-) dS 3)

where Ag is that portion of A,, the exit cross section of the
nozzle, which is influenced by the secondary injection;
1M is the rate of mass flow of the primary fluid; and the sub-
seript e denotes the conditions at the exit section in the ab-
sence of injection. It has been assumed as usual that V, is
uniform over A4, and equal to i U.. In obtaining Egs. (2)
and (3), the viscous forces acting on the boundary of region
®& are neglected. With this understanding, these equations
take into account the boundary layer along the nozzle wall
and its interaction with the induced shock wave. It is,
however, assumed that the secondary injection and the con-
sequent shock/boundary-layer interaction do not affect the
flow conditions at the throat section of the nozzle.

In Eqgs. (2) and (3), the thrust augmentation and the side
force are expressed in terms of the flow conditions at the exit
plane of the nozzle. The right-hand members of these
equations, however, contain As and p, p, and V over As as
unknowns. Thus, to be able to solve for 6F, and F,, one
needs further equations. To obtain the additional equa-
tions, the principles of conservation of mass and energy
and the equation of state are used. For simplicity and for
the ease of discussing the utility of the present approach in
Light of available experimental results, only the case where
the primary and secondary fluids are nonreacting gases is
considered, and heat conduction and viscous dissipation are
neglected. Applying the principles of conservation of mass
and energy to the fluid in the region & for the two cases of
with and without injection one obtains the following two
relations:

4
S v as = sin 4 2 @
A8
2
ffp(h—l—%)V-idS:rmHi-{—moHoi—s ®)
A8 ¢

Here, m; is the rate of mass flow (into the rocket nozzle) of
the secondary fluid; H, is the total (or stagnation) enthalpy,
per unit mass, of the primary fluid; and H, is the total en-
thalpy, per unit mass, of the secondary fluid. Next, it is
assumed that the primary and secondary fluids are perfect
gases and that their mixture follows an equation of state,
of the form

h = (c¢/R)(p/p) ®

where ¢ and R are, respectively, the appropriate specific heat
at constant pressure and the gas constant per unit mass. In
obtaining Eqs. (4) and (5), it is assumed that the conditions
of flow in the presence of injection are uniform over the area
A
Equations (2) and (6) form a system of five equations for
eight unknowns and yet are not in a form suitable for con-
structing a solution of our problem. The difficulty is that,
in the presence of secondary injection, the flow quantities
on the surface As are, in general, nonuniform. To be able
to proceed further, it is assumed that, even in the presence
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of secondary injection, uniform conditions exist} on the sur-
face area Ag, these conditions being, in general, different from
those that occur on the surface area 4, — Ag, i.e., those that
occur on A, in the absence of secondary injection. It is
observed that there is no a priori reason to expect that, in the
presence of injection, conditions on As would be uniform.
It is, however, conceivable that if the injection port is suffi-
ciently ahead of the exit plane of the nozzle and if there is
sufficient mixing of the primary and secondary fluids, the
flow conditions on As may be nearly uniform. Using this
assumption, and denoting by u and v the x and y components
of V over As, Egs. (2-6) may be rewritten as

8F, = (p — p)As + mu — mg UdAs/As) ]

F. = nw 8)

ou As=m = m; + me(ds/A) )
m<h + ¥ er ”2) = 1ivH; - 1o Hojf (10)
k= (¢/R) (p/p) = (c/R)(pAsu/m) an

These equations form the basis for an approximate solution
of the problem. They constitute, however, a system of only
five equations for eight unknowns, viz., 6F,, F,, As and the
fluid quantities p, p, h, 4, v assumed uniform over As. It is
suggested that the required additional relations between
the fluid quantities at the exit section may be developed, to
sufficient aceuracy, on the basis of some over-all experi-
mental and theoretical studies without seeking the complex
details of the interaction between the secondary and pri-
mary fluids. In the next section an example is given of how
this may be done and how an approximate solution of the
system of Eqs. (7-11) suitable for certain conditions of opera-
tion may be constructed. For a comprehensive development
of the additional relations, one needs more experimental
information than is presently available.

An Approximate Solution

Consider first the area As. To ecalculate this area one
needs to know the shape of the shock wave induced by the
secondary injection. A sufficiently accurate determination
of the shape of the complete shock wave (particularly of the
portion near the injection port) may require many of the de-
tails of the flow field near the injection port and may not be
readily feasible. In this approach to the problem the shape
of the complete shock is not of interest, much less is its shape
near the injection port. What one needs to know is the shape
of the shock at the exit section of the nozzle. If the injection
port is located at a sufficient? distance from the exit section
it is expected that the shape of the shock at the exit section
may be computed sufficiently accurately by a method that
will not involve many details of the actual mechanics of the
interaction between the secondary and primary fluids. An
example of the method in question is the attempt by Broad-
well? to apply the results of blast wave theory to the analysis
of thrust vector control by secondary injection. Following
Broadwell, the results of blast wave theory will be used in the
next section to compute the shock shape at the exit section.
For the present, to proceed with the solution of this problem,
Ag is treated as an independent quantity. Next considered
is the possibility of expressing p or % in terms of the other
unknowns. After examining several possibilities in light of

1 One can improve this assumption by introducing suitably
defined mean values; however, for simplicity, uniformity is
assumed in the following.

§ Criteria for what is meant by sufficient distance to be estab-
lished on the basis of appropriate experimental and theoretical
investigations.



NOVEMBER 1963

the limited experimental information presently available, the
following scheme is adopted. Write
u=U,+u

and express Eqgs. (7) and (11) as

- - miu Asw
= (p Pe)As+moUc( + U+A, U.,) (72)

h=;pjs <1+ ) (11)

The term ? in the energy equation (10) becomes

2 r u’ 2]
vef1+2 ¥+ (U)
Now it is assumed that v’ < U, and that v’ < v. Then

Egs. (7a) and (11a) may be rewritten in the approximate
form

0F s ~ (p — p)As + 1 U (7b)
h =~ (¢/R)(pAsU./mh) (11b)
and the term %? in the energy equation in the form
w>~U2+ 2u U,

To eliminate %’ from the problem and proceed to a solution,
set arbitrarily (for lack of suitable experimental information)
that 2u'U, ~ 20U, and write

ut~ U2+ 20U, (12)

It is seen that once p is known, the thrust augmentation is
immediately given by Eq. (7b).

Another relation is still needed. One may try to stipulate
a relation for p, but due to insufficient experimental informa-
tion it is difficult to do so at present. Therefore, leave p as
is and solve for the side force in terms of it. This procedure
is satisfactory for, as will be seen later, it will enable one to
check the calculated formula for the side force (or equivalently
the utility of the present approach) with experimental re-
sults. With this understanding and using the relations
(11b) and (12), Egs. (8-11) may be solved to obtain the side
force as

A
Fs=—(m@+moAS>+

e

A Ag
{2(7)'% + Wﬁ)(mt H; + o Ho A, R pAsU., )}(13)

In nondimensional form, this may be rewritten as

F 8 m.; A 8 mi AS
= — [ — 4 = of T4 28
o U, (m0+Ae>+{ <m0+Ae>X
i H; Ho As c P As 12
(mo Ui T U2 4 B U)} (14
where As and p are yet to be expressed explicitly in terms of
the given parameters of the problem. As mentioned be-

fore, an approximate relation for Az will be constructed while
leaving p as is.

Area Ag under Certain Conditions

The area Ag is computed by applying the results of blast
wave theory. In the absence of suitable experiments, it is
difficult at present to assess the limits of applicability of such
a computation. On the basis of Broadwell’s preliminary
work,? however, it may be expected that such a computation
of As may be satisfactory under certain flow conditions.

Following Broadwell,? the shape of the induced shock wave
is calculated now by using the results of the analogy between
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the unsteady flow field of a cylindrical blast wave and the
steady, axisymmetric, inviscid, small disturbance, hyper-
sonic flow field past a blunt-nosed slender body of revolu-
tion.!  According to this analogy, the shape of the axisym-
metric shock for the flow over the body is given by the rela-

tion
2y E\V4/ ¢ \12

K <7FJ pw> <Um> 15
where, as shown in Fig. 2a, R({) is the radius of the shock
wave at the station { measured from the tip of the nose;
U, and p. are the velocity and density, respectively, in the
freestream ahead of shock E, which has the dimensions of
energy per unit length and is set equal to the nose drag; v is
the ratio of the specific heats; and J is a constant whose value
depends on the value of v.#

In applying the result (15) to the problem of the shock
induced by secondary injection into the flow through a rocket
nozzle, Broadwell assumed that the shock in the nozzle is
axisymmetric and of the same shape as the shock generated
by secondary injection through a plane in an originally uni-
form supersonic stream (see Fig. 2b), the plane being parallel
to the stream. The velocity and density of the undisturbed
stream in this model are assumed to be the same as the ve-
locity U, and density p. that exist at the injection station
in the nozzle flow when there is no secondary injection. It is
further assumed that the shock shape in this model (i.e., of
Fig. 2b) may be computed by the relation (15). To connect
E, the energy per unit length, to the injection parameters,
Broadwell argued that E/2 is equal to the magnitude of the
axial momentum the secondary fluid gains eventually, i.e.,
after it mixes fully with the primary fluid. For normal in-
jection, this gain in momentum is assumed to be m; U, (re-
call that i, is the mass flow rate of the injectant). Thus,
setting E equal to 2m; U in Eq. (15), one obtains

4 “. 1/4

where R is now the radius of the shock induced by secondary
injection in the plane, and ¢ is the length measured from the
injection port along the axis of the shock (see Fig. 2b).

Denoting by A. the cross-sectional area of the nozzle at the
injection location, one has po Us 4w = my. Therefore, Eq.
(16) may be rewritten as

<4’y i m)m e an

J o

Equation (16) is used to compute the area 4s. To do this,
it is assumed that the induced shock in the rocket nozzle is
axially symmetric about the curve of intersection between the
injection plane and the nozzle surface. The coordinate { is
then measured along this line. With this definition of { and
using Eq. (17), one obtains the following approximate ex-
pression for Ag:

18 (3)e

- <RE) - (iils>[2 <RS> ] $ (18

I In this paper, the use of blast wave analogy is different from
that of Broadwell’s. Here, it is being used only to compute the
shock shape at the exit section of the nozzle. Broadwell, on
the other hand, uses it to analyze thrust vector control in its
entirety, i.e., to compute the shape of the complete shock wave
80 as to obtain the disturbed area of the nozzle surface and to
compute pressure distribution over that area. The blast wave
analogy does not yield satisfactory results for the complete shock
shape and the pressure distribution near the injection port.

# Value of J varies from 1.55 for v equal to 1.2; to 0.59 for v
equal to 1.667.
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where d is the diameter of the exit section of the nozzle,

¢ = [1 — (Rs/d)?]¥2

RS v 1/4 mz Am 1/4 l 1/2
i - () GG @
with Es being the radius of the shock at I, which is the dis-
tance from the injection port to the exit section along ¢.
Equations (17) and (18) are strictly applicable to the situa-
tion where the shock shape at the exit section of the nozzle
is not dependent on the interaction between the shock and the
boundary layer along the nozzle wall. This may be the case
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Fig. 2 Blast wave analogy.
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when the interaction is sufficiently weak or when the region
of interaction is sufficiently ahead of the exit section. At
present, the authors have no experimental information to
assess this matter. Therefore, in applying Eqs. (17) and
(18), the authors restrict themselves only to those cases where
the shock/boundary-layer interaction is expected to be
negligible.

Experimental Verification

Some experimental verification of the present approach is
sought now. What the authors wish to do is to examine how
the values of the side force F,, as computed on the basis of
Eqgs. (14) and (18), compare with those measured in appro-
priate experiments. By appropriate experiments is meant
those in which the conditions of the experiments are nearly
similar to the ones stipulated in the present analysis and in
which all the necessary information with regard to the given
parameters of the problem is fully known. Some of the
experiments of Rodriguez® appear to be most suitable for the
purpose here. These experiments were carried out with two
contoured nozzles, one with an expansion ratio of 16:1 and
the other with an expansion ratio of 25:1. The primary and
secondary fluids were air at room temperature. The tests
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Fig. 5 Side force vs injectant mass flow rate for a 16:1
nozzle; ¢ = 9 (experiment—Ref. 3).
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Fig. 6 Side force vs injectant mass flow rate for a 16:1
nozzle; ¢ = 12 (experiment—Ref. 3).
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Fig. 8 Side force vs injectant mass flow rate for a 25:1
nozzle; ¢ = 17.1 (experiment—Ref. 3)..

were done for different locations of the injection port and
for different conditions of the secondary flow. Different
stagnation pressures were employed for the primary and
secondary flows. Secondary injection was sonic flow through
a single port. The size of the injection port was varied.
Most of the measurements were made for injection normal
to the nozzle wall.

The computation of the side force on the basis of Eq. (14)
is carried out as follows: from the conditions of the experi-
ment all quantities, except p, in the right-hand side of Eq.
(14) are calculated, As being calculated from Eq. (18).
Since an explicit formula for p is not developed, it is com-
puted on the basis of Eq. (7b) by using the value of the
thrust augmentation §F, measured in the experiment at the
conditions under consideration.

The comparison between the computed and measured values
of the side force is presented in Figs. 3-9. In these figures,
F is the thrust on the rocket in the absence of secondary in-
jection, € is the nozzle expansion ratio, and e; is the expan-
sion ratio at the location of the injection port. The solid
curve gives the values calculated from Eq. (14). The ex-
perimental values are shown by points. In calculating the
ratio F,/F; the authors have set Fy as equal to my U., since
the measured values of F, were not available.

Figures 3-6 all refer to the nozzle with an expansion ratio
of 16. Each figure refers to a different location of the in-
jection port. It is seen that, for €; equal to 4, 7, and 9 (Figs.
3-5), the results given by Eq. (14) agree closely with the

RATIO: rhi/rh'o PERCENT

Fig. 9 - Side force vs injectant mass flow rate for a 25:1
nozzle; ¢ = 20.8 (experiment—Ref. 3).

measured values. When the injection port is located closer
to the exit section, as seen in Fig. 6, there is no agreement
(as to be expected) between the calculated and measured
values. .

Similar results are exhibited 'in Figs. 7-9, which refer to
the nozzle with an expansion ratio of 25. It is seen (Fig. 7)
that, for e equal to 12.8, there is close agreement between
the calculated and measured values. It is interesting to note
(Fig. 8) that, for €; equal to 17, there is close agreement be-
tween the calculated and measured values for 30° downstream
injection although there is no agreement between them for
normal and 30° upstream injection. This is perhaps due to
boundary-layer shock interaction that is likely to be more pre-
dominant for the normal and upstream injection than for the
downstream injection.

The disagreement exhibited in some of the figures is not
disheartening, for in view of the assumptions and approxi-
mations involved in obtaining Eq. (14), one does not expect
it to be valid when the injection port is near the exit section,
or when the effects of shock/boundary-layer interaction be-
come important. Under these conditions, the assumptions
that the flow conditions over the area As are uniform in the
presence of injection and that the velocity component u is
approximately equal to U. are unreasonable. Also, the
computation of the area As by application of the blast wave
analogy (apart from the assumptions implied in the analogy)
becomes questionable. ‘

It is encouraging to find that in the range of the flow condi-
tions envisaged in the analysis, the calculated and experi-
mental results are in close agreement. A point to be noted
in this connection is that the results from Eq. (14) show that
the ratio F,/F, levels off at high values of the ratio /7,
apparently a result not indicated by analyses based on ap-
proaches different from the present.

Remarks

The approach given in this paper appears to offer a useful
and valid method for an approximate analysis of thrust vec-
tor control by secondary fluid injection. Since the method
involves a knowledge of the flow conditions only at the exit
section of the nozzle, it is expected that satisfactory results
may be obtained without entering into the actual details of the
complex interaction flow field near the injection port and the
integration of pressures over the nozzle wall.

To establish fully the method given here, further investi-
gations suggested in the course of the analysis are needed.
Of particular importance are experimental investigations.
One important investigation is the determination of the shock
shape at the exit section of the nozzle. Another.is the meas-
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urement of the flow conditions at the exit section. The
determination of the effects of shock/boundary-layer inter-
action in the nozzle on the shock shape and flow conditions
at the exit section are also needed.

Extension of the present approach to the case of reacting
fluids would again lead to a method of analyzing thrust
vector control without seeking many of the details of a much
more complicated flow field. (This extension is now under
study.) The authors expect that, in the case of the reacting
fluids, just as in the present case of nonreacting fluids, the
problem would reduce to the determination of a few vari-
ables instead of that of all the variables. The solution for
these may then be attempted on the basis of some over-all
considerations or by suitably combining theoretical and
experimental results.

By analyzing thrust vector control on the basis of the pres-
ent approach, one may be able to pick out the important
nondimensional parameters in the problem and know, to a
satisfactory extent, the functional dependence of the side
force on those parameters. For the case of inert gases, it
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can be shown, on the basis of Eqs. (14, 18, and 19), that the

nondimensional side force is given by a relation of the form
Vi i peA.

Fe (e e v ke e 1)
1o U mg Ue? U2 T 5y e’ Uy ¢ d

where v denotes specific heat ratio, and u denotes molecular
weight.
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Optimal Programming Problems with Inequality Constraints

I: Necessary Conditions for Extremal Solutions
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The necessary conditions are presented for an extremal solution to a programming problem

with an inequality constraint on a function of the control and/or the state variables.

Itis

shown that, in general, certain terms must be added to the Euler-Lagrange equations during
intervals in which the solution curve lies on the boundary. Furthermore, for an inequality
constraint function not explicitly involving the control variable(s), one or more functions of
the state and time must satisfy equality constraints at the beginning (the entry corner) of an
inequality constraint boundary interval. These constraints cause discontinuities in the in-
fluence functions (Lagrange multiplier functions) at the entry corner. The derivation of
the necessary conditions which is given may also be used to allow the equations of metion to
be discontinuous or even integrably infinite functions of the state as well as the time at a finite

number of points.
straints are presented.

1. Introduction

N the calculus of variations, the problem of Bolza (the

Mayer formulation is used) has been and continues to
be of major significance. A dynamical system is considered
which is represented at any time by the values of its state
variables and whose development in time is determined by
choices of control variable program(s). The Bolza problem
asks for that control variable program(s) which will maximize
(minimize) a given function of the state, while constraining
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Two analytic example problems with state variable inequality con-

other functions to specified values, at the terminal point.
In this.paper, the primary concerns are the modifications and
additions to the necessary conditions for an extremal solution
of the Bolza problem when there is an inequality constraint
imposed, along the entire path, upon some function of the
control and/or state variables.

Problems involving inequality constraint(s) on the con-
trol variable(s) were treated as early as 1937 by Valentine.!
More recently, they were discussed by Cicala? and by Break-
well.3  Problems involving inequality constraints on a func-
tion of the state variables with no explicit dependence on
the control variables have been treated only in recent years.
Gamkrelidze* in 1960 presented necessary conditions for ex-
tremal solutions assuming that the time derivative of the in-
equality constraint function was an explicit function of the
control variable(s). Berkovitz® obtained essentially equiva-



